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We characterize the dynamics of runners in the famous “Running
of the Bulls” Festival by computing the individual and global
velocities and densities, as well as the crowd pressure. In con-
trast with all previously studied pedestrian systems, we unveil a
unique regime in which speed increases with density that can be
understood in terms of a time-dependent desired velocity of the
runners. Also, we discover the existence of an inaccessible region
in the speed–density state diagram that is explained by falls of
runners. With all these ingredients, we propose a generalization
of the pedestrian fundamental diagram for a scenario in which
people with different desired speeds coexist.

pedestrian dynamics | fleeing behavior | fundamental diagram | high-speed
pedestrians

The world-famous Running of the Bulls (San Fermín) Festival
constitutes a unique system of pedestrians running away from

bulls in the streets of Pamplona (Spain). Curiously, despite that
this race has been repeatedly used as an illustration of com-
petitive pedestrian dynamics, it has not been studied in detail
until now. Runners, first waiting for and then escaping from
bulls, constitute a fascinating annual scenario of real fleeing
pedestrians, becoming an invaluable opportunity for studying
and understanding extreme pedestrian dynamics.

One of the main macroscopic observables for characterizing
pedestrian systems is the fundamental diagram derived from the
speed–density relation for a group of moving pedestrians (1–
16). This relation, which is used as a benchmark in design and
planning (17–20), accounts for the accepted fact that the speed
of the group decreases monotonically as the density increases.
Under ordinary conditions, this behavior can be explained be-
cause people try to avoid physical contact and slow down when
the available space reduces. A key feature of this plot is the
speed at near-zero density, which indicates the velocity at which
pedestrians would move if they were alone. This speed is known
as the desired speed or the free speed (v0).

Given their importance, speed–density relations are widely
studied in the literature; however, most of the existing investi-
gations assume implicitly two essential facts:

• All pedestrians have constant desired speed normally dis-
tributed with small variance (an exception to this is the time-
dependent desired speed implemented in ref. 21).

• The speed–density relations correspond to stationary (or
quasi-stationary) pedestrian systems.

Importantly, these premises hold even for the fundamental dia-
grams obtained in extreme conditions. As examples, we highlight
the fundamental diagram for running pedestrians at medium

speed (16), the empirical results collected in a real event (8), and
the outcomes obtained in highly competitive evacuation drills
in which pedestrians were allowed to push each other (22). In
these last two cases, very high densities were present (which dom-
inate the dynamics) and the free velocities were below 1.5 m/s.
Remarkably, the assumptions used for traditional fundamental
diagrams are not valid in the Running of the Bulls Festival.
Here, a moving threat (the bulls) induces time-dependent desired
velocities along with a broad distribution among individuals. To
understand the complicated dynamics observed, we characterize
this system by studying—among other variables—the speed, den-
sity, and falling probability of the pedestrians.

The Pedestrian System
During the week of the San Fermín festival, there is a bull run
(“encierro”) every morning through the streets of Pamplona.
The course is 875 m long, starting in a yard, and finishing in
the bullring (see map in ref. 23). There, people run in front of
six fighting bulls that are accompanied by six tamed bell oxen.
Although the distance is not too long, it is impossible for a
runner to cover the whole course for several reasons, such as the
presence of other runners and, above all, the high speed of the
bulls (the mean speed of the bulls, in our measurement areas, is
6 m/s).

Significance

A topic of special interest in crowd dynamics that can lead
to better infrastructure management is the study of people
under high competitiveness. Persons fleeing from real danger
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Fig. 1. Layout of the street and locations where the videos were recorded
on 8 July (day 1) and 9 July (day 2). Dashed rectangles indicate the FOV of the
camera. Blue arrows indicate the camera position. Red lines show recorded
bull trajectories (heads and tails).

We recorded two of these runs on consecutive days (8 and
9 July 2019) at two different locations in Estafeta Street. This
300-m-long street is the most famous in the bull run and is
characterized by being relatively narrow (around 7 m wide). It
starts at a corner; we have taken one recording 10 m after it
and another one at about the middle of the street length. Both
locations and the corresponding field of view (FOV) are shown
in Fig. 1.

Trajectories of individual bulls and runners were extracted
from the recorded videos (Materials and Methods and Datasets
S6–S12). Bulls were marked as six human-equivalent positions
(the mass of a bull is similar to the mass of six runners): one on
the head, one on the beginning of the tail, and the rest on top
of each leg (two over the scapulae and two over the hips). These
six points were taken as six virtual humans when calculating the
densities of neighbor runners, but were not considered in any
other calculation performed in this work. The computed speeds,
densities, and other related quantities all correspond only to the
runners.

To understand the results, it is important to know the proceed-
ings of the festival. People are admitted into the premises at 7:15
AM, and they wait there for 45 min. We have called this state
SA, in which runners first remain in place, at high density, and
then walk slowly (see the x-velocity distributions, vx , in Fig. 2A
and Movie S1 [https://osf.io/pu35r/]). At 8:00 AM the bullring
door—at the end of the course—is open, and a sizable portion
of the people walk into it, so that only some runners remain in
the path waiting for the bulls. The street becomes less congested
and, occasionally, runners are seen to warm up (Fig. 2B, system
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Fig. 2. States of the pedestrian system. (A) State SA. (B) State SB. (C) State SC . (D) State SD. (E) State SE . See text for description of the states. In the snapshots
(A–E, Left), labels indicate the pedestrian number, the circles mark the actual position of runners, and the dotted lines show the distance traveled by runners
in a time lapse of 0.13 s (Materials and Methods). Bulls are indicated by six runner-equivalent circles. Consider shoulder width (∼0.4 m) as distance reference.
(A–E, Right) The PDF of the x component of the velocity is displayed for each state.
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state SB ). Then, a few seconds before the bulls arrive, a shock
wave of running pedestrians at high velocity is observed. This
shockwave triggers the starting of the race of the waiting runners.
This behavior nicely correlates with the velocity distributions
displayed in Fig. 2C, which show two clear peaks at vx = 0 and
vx ≈ 3.5 m/s, corresponding to what we have called state SC .
Once the bulls along with the runners in front of them have
passed by, a wake of runners with decreasing speed is observed
(Fig. 2D, state SD ). In about 40 or 50 s the system relaxes toward
a situation of normal walking on a pedestrian street, eventually
perturbed by lonely runners jogging at medium speed (Fig. 2E,
state SE ). In summary, depending on the instant of the race, the
PDF (probability density function) of the x velocity displays peaks
of different widths at four distinct positions corresponding to
groups of people with different desired speeds, which is relevant
for the forthcoming analysis. Finally, 2 min after the beginning of
the race, four extra tamed bell oxen run along the path with the
purpose of guiding a possible delayed bull to the bullring.

Results
Time Evolution of Macroscopic Observables. We start by analyzing
several macroscopic quantities averaged over all the nj (t) pedes-
trians present in each time frame (t). In particular, we calculate

the mean speed < v > (t) =
∑nj (t)

j=1 vj (t)

nj (t)
, the mean density < ρ >

(t) =
∑nj (t)

j=1 ρj (t)

nj (t)
, and the mean pedestrian pressure < P > (t) =

∑nj (t)

j=1 Pj (t)

nj (t)
. Described in refs. 8 and 22, Pj is the local crowd

pressure Pj = ρj Var(vj , knn) computed with the variance of the
velocity over the k = 5 nearest neighbors for each pedestrian j
(which are the same ones used to calculate the individual densi-
ties as explained in Materials and Methods). In Fig. 3 we display
the time evolution of these variables only for the region just
after the corner (similar results are obtained at the middle of the
straight street). Interestingly, all quantities present a remarkable
growth when the first bull enters in the field of view (defined as
t = 0) followed by a relaxation that is rather quick for density
and pressure. The relaxation seems to be slower for the case
of velocity: Even well after the passage of the last bull of the
first group (second vertical dashed line) it seems that there is a

wake of people running quite fast following the bulls toward the
bullring. The passage of the later four tamed bell oxen (second
pair of vertical dashed lines) also displays a small growth of the
velocity and pressure values. The low densities at which this last
event occurs evidence that it is not appealing to runners. The
values reported in Fig. 3B clearly correlate with the occurrence
of the four last states described in Fig. 2 (SB to SE ). State
SA (corresponding to normal walking and people waiting) took
place several minutes before and is not included in these time
series. The mean of the absolute value of the y component of the
velocity displayed in Fig. 3B, which captures the occurrence of
lateral movements, also presents a maximum when the bulls pass
through the analyzed region. This feature correlates with a well-
known runner strategy that consists of stepping aside when they
are not able to keep up with the bulls’ pace.

Beyond all the features described above, the most striking
behavior of the bull run in the context of pedestrian dynamics
is that the speed and density increase simultaneously, in clear
contrast with the traditional fundamental diagrams reported in
the literature. Therefore, we further look into this phenomenon
by representing the speed–density relation of the averaged ob-
servables (Fig. 4), keeping the time information in the color code
of the curve. Measurements at both locations along the street
reveal similar behaviors. The initial state (SB ) can be identi-
fied at the beginning as a dark blue curve in the density range
ρ ∈ (0.4, 0.6) m−2 and mean speed around < v >∼ 0.3 m/s. As
explained, this corresponds to runners waiting for the bulls at a
fixed positions and occasionally jogging toward another location.
As bulls come closer (state SC ), the mean speed increases up
to a maximum (around 4 m/s) at which the density also reaches
its highest value (around 1 pedestrian per square meter). After
this, the system relaxes toward a normal walking situation with
mean speed around < v >∼ 1 m/s, perturbed only when the
second four-bull pack passes, displaying a velocity peak at lower
densities. We emphasize that only pedestrian data were used for
computing these quantities.

Despite the complicated dynamics, if we look only at the
speed–density relation, it is evident that the general rule of
decreasing speed when the pedestrian density increases is not
fulfilled. Noteworthy, a monotonically decreasing speed–density
relation has been consistently observed in dozens of different
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scenarios, including competitive situations (8, 22). Therefore,
this speed–density relation seems to deviate from the general
rule. Of course, several differences can be outlined between the
bull run and most pedestrian systems. The first one is that in this
case, the process is nonstationary as the irruption of bulls intro-
duces a big perturbation in the system. Another one concerns the
willingness of pedestrians to run in front of the bulls. Finally, it
should be also noted that, if we consider the whole process, a wide
range of desired velocities are present in the system. Therefore,
in the following section, we investigate this problem by analyzing
the speed–density relation from a microscopic point of view.

Untangling the San Fermín Speed–Density Relation. In Fig. 5A, we
represent with gray dots the values of velocity versus density, as
calculated at the individual runner level (Materials and Methods)
in all the frames registered at both street locations, as indicated in
Fig. 1, and including those in the state SA (which were not present
in the time series). Contrary to the observation made in the
mean speed–density diagram for states SB to SE (Fig. 4), when
including state SA the data cloud seems to suggest a reduction of
the velocity as the density increases. Also, it is interesting to note
that the points cluster in two overlapping but well-differentiated
groups: one for low densities (ρ < 2 m−2) where the velocities
span from 0 to 7 m/s that in Fig. 5A appears as a vertical cloud

of points and the other for high densities (ρ > 2 m−2) where
the velocities are always smaller than 1.5 m/s and in Fig. 5A
appears as a cloud of points with an envelope that has a slightly
decreasing slope. There is a depleted region in the speed–density
plane: Runners struggle to reach velocities above 1.5 m/s when
ρ > 2 m−2. Interestingly, within all the data points represented
in Fig. 5A, we can distinguish very different pedestrian behaviors
depending on the runner analyzed and the specific state of the
race as described above. As an example, in Fig. 5A we show three
characteristic trajectories in the speed–density space (each one
corresponds to a different pedestrian). Among the trajectories,
we can distinguish a “standard” one occurring at high densities in
which the speed reduces as the density increases. Nevertheless,
there are other (less common) trajectories where we observe a
wide range of speed values for the same or similar (low) densities.
This behavior is a piece of clear evidence that pedestrians may
change their desired speed with time. For example, pedestrians
waiting for the bulls have zero desired speed and, as the bulls
come closer, they begin to run, raising the desired speed up to
the maximum.

To classify the different behaviors, we perform a principal com-
ponent analysis (PCA) for each trajectory in the speed–density
space and use the slope (m) of the first direction vector as a
classification parameter. This direction is the one that maximizes
the variance of the data (24). Examples of these vectors are
shown in Fig. 5A as dashed lines along with their slope values.
Then, we choose three groups of pedestrians: 1) Pedestrians
with m ∈ [−1, 0] are said to display “normal behavior” since the
speed decreases when the density grows; 2) pedestrians showing
m ∈ [1, 10] are considered to be in an “atypical” scenario because
the speed increases with increasing density; 3) and finally, when
|m|> 10, we have pedestrians in an “extreme condition” as there
is an important variation of speed for a rather constant density
value.

Next, in Fig. 5 B–D, we represent the data points of the speed–
density relation that correspond to each class (normal, atypical,
and extreme, respectively). Fig. 5B reveals that almost all data in
the speed–density relation for which ρ > 2 m−2 correspond to
pedestrians displaying normal behavior. On the contrary, a small
portion of the data obtained for small values of ρ corresponds
to this class of motion. Considering only pedestrians displaying
normal behavior, we group individual trajectories according to
the speed v0 at their minimum density (this can be seen as an
approximation of the free speed for each given trajectory). Then,
we implement a moving average of the data corresponding to
each subgroup, obtaining the results represented in Fig. 5B. In
most cases, the relation is consistent with the traditional negative
slope encountered in the literature. However, as the free speed
values increase, it is more likely to find almost horizontal curves
indicating a constant speed independent of the density. It is
reasonable to think that for high competitiveness, as the moving
threat approaches, runners want to maintain the maximum speed
no matter the density. Also, it is interesting to note that the
curves corresponding to 0≤ v0 ≤ 1 m/s and 1≤ v0 ≤ 2 m/s are
clearly distinguishable when the density is smaller than 2 m−2,
but coincide for higher densities. This feature—already reported
for pedestrian dynamics (7, 16) and in a system involving cars
and lorries (25)—suggests that the desired speed has a crucial
role in the dynamics observed in dilute conditions, but it becomes
less relevant as the density increases. Although our data at
high density correspond to state SA (people with slow desired
velocity), in other systems the zone of high density and low speed
could display a particular regime of people pushing each other
that can cause instabilities, as observed in experiments (22, 26)
and turbulent flows as reported for crowd catastrophes (8, 27).

In Fig. 5C we show a similar analysis to the one implemented
for normal conditions, but for the atypical condition. In this case,
the cloud of gray dots shows that the atypical behavior always
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Fig. 5. Microscopic speed–density data points. (A) Gray dots represent all pedestrian data obtained from the whole race for the two recorded locations.
Solid colors, three examples of individual pedestrian trajectories in the speed–density space. The dashed lines and the m value in their corresponding color
display the slope of the principal component vector for each trajectory. (B) Speed–density data for pedestrian showing normal behavior (i.e., m ∈ [−1, 0])
and the corresponding speed–density curves obtained by computing the moving average of the data when grouped according to its speed at minimum
density as indicated in the key. (C) Speed–density data for pedestrian showing atypical behavior (i.e., m ∈ [1, 10]) and the corresponding speed–density
curves obtained as a moving average of the data, when classified according to its speed at minimum density as indicated in the key. (D) Speed–density data
for pedestrian showing extreme behavior (i.e., |m| > 10) and the corresponding speed–density curves obtained by performing a moving average of the data
when classified according to its density at minimum velocity as indicated in the key.

corresponds to situations of low density (ρ < 2 m−2). Again,
if we group runners according to their speeds v0 at minimum
density, we observe a consistent set of features, for instance that
the curves display positive slopes and separation between them
(with the only exception of the two obtained for the smallest
values of v0). All these characteristics, together with the weak
dependence of the speed on the density observed for low density
values and high desired speeds shown in Fig. 5B, strongly suggest
that the only parameter governing the runners’ behavior in dilute
conditions is their desired speed.

Finally, the extreme scenario of pedestrians displaying |m|>
10 is, as expected, observed in the region of ρ < 2 m−2 (Fig. 5D).
In this case, as trajectories are almost vertical, the moving av-
erage is computed along the speed axes, grouping trajectories
depending on the value of their minimum density. As in the
atypical scenario described above, the observed behavior would
correspond to pedestrians changing their desired speed for near-
constant density values. Nevertheless, the fact that the slopes in
the speed–density relation reduce as the initial density augments
suggests that pedestrians’ ability to reach very high velocities
diminishes as the density grows. Indeed, this result supports
the previously mentioned idea of the existence of a inaccessible
region in the speed–density diagram (speeds above 1.5 m/s and
ρ > 2 m−2).

The Inaccessible Region in the Speed–Density Relation. In this sec-
tion we delve into the existence of the inaccessible region of the
speed–density space. The question is whether the absence of data
for speeds above 1.5 m/s and ρ > 2 m−2 has a psychological
reason (i.e., people voluntarily decide to avoid running at high

densities) or, otherwise, if there is any physical constraint that
prevents the entry into this area of the parameter space. To shed
light on this we have carefully analyzed the falls of the runners,
because we have realized that a remarkable proportion of these
incidents coincide with the passage of the bulls (which is the
situation of higher speed and density).

Indeed, the events with multiple falling people have paramount
importance because they can trigger massive pile-ups that may
cause a large number of casualties. Several falls involving a large
number of persons have occurred in previous years, mainly at the
narrowest part of the path (the entrance of the bullring), as in
1957 (28) and 1977 (29) or more recently in 2013 (30). Although
these big pile-ups are sporadic, single falls or small-group falls are
more frequent, and some instances were seen in our recordings.
In particular, we observed a total of 20 people falling, 13 on
the first day and 7 on the second day. All of them took place
during the passage of the bulls, coinciding with a scenario of
high average density, velocity, and crowd pressure, as shown with
vertical colored lines in Fig. 3C for day 2 (the same occurs for
day 1). This seems a piece of additional evidence in favor of the
hypothesis of Helbing et al. (8) who proposed that the crowd
pressure can be correlated with the probability of falling.

Indeed, it is natural to assume that the first falling and the
consecutive ones will occur with increasing probability when
augmenting both the crowd speed variance and density. Less
available space can cause accidental physical contact of runners,
which may affect their motion and trigger their falling. Therefore,
the probability of falling in the bull run will vary drastically over
time, being significant only in the transition between states SC

and SD coinciding with the bulls’ passage. But in addition to
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Fig. 6. Microscopic speed–density data for pedestrians identified at the
time of the bulls’ passage. For each pedestrian, two points are represented,
one for the pedestrian’s maximum velocity and another for the pedestrian’s
maximum local density. Red and blue dots represent data for pedestrians
that fall and do not fall, respectively, as indicated in the key. In the case of
falling, the data belong to the trajectories before the falling event. Red and
blue solid lines represent the moving averages (MA) along the speed axis
computed for each case.

this, the falling probability will also depend on, for example, the
occurrence of a previous fall, i.e., the presence of a runner on
the ground. Indeed, it is interesting to note that only 6 falls were
independent (uncorrelated) whereas 14 of them belonged to a
small-group fall. Although our sample size is small, we estimate
a falling probability by counting the ratio between the number
of falls and the number of runners between the first and last
of the 12-pack bulls. If we include runners from the frame in
which the head of the first bull exits the FOV to the frame when
the tail of the last bull enters the FOV, we counted 97 runners
(both days combined). Thus, the 20 observed falls lead to a falling
probability of about 0.21. Note that this value might be likely an
overestimation. If we consider instead the interval between the
entrance of the first bull in the FOV and the exit of the last one,
the fall probability would be 0.08. The data presented in Fig. 6
(blue) correspond to this last computation.

To decide whether there is any relationship between the falling
events and the inaccessible region in the speed–density diagram,
in Fig. 6 we compare the microscopic speed–density relations for
the falling pedestrians with the nonfalling pedestrians. For this
comparison, only the data of nonfalling pedestrians that are in
the movies during the falling events (i.e., when the bulls cross
through the field of view) are considered. In addition, given
that falling events are probably related with extreme values of
either speed or density, we draw in the plot only two points for
each runner: One represents the pedestrian velocity when the
density at the pedestrian location is maximum and the other the
density at the pedestrian location corresponding to the maximum
velocity of that particular pedestrian. Then, we compute the
moving averages of each group of data separately (taking the
speed axis as the independent variable), evidencing a clear shift
toward higher densities for the case of pedestrians that fall. We
propose that the moving-average line corresponding to falling
pedestrians could be seen as a boundary separating zones of
physically allowed speed–densities from another zone in which
the pedestrian system would collapse because of the occurrence
of falls. Indeed, this hypothesis is supported by the fact that
the position of this vertical line seems to coincide with the
density and velocity values above which the density of points

in the global microscopic speed–density relation is dramatically
reduced (Fig. 5A).

Another strong argument for the existence of an inaccessible
region in the speed–density diagram can be put forward from
independent biomechanical arguments if we consider that the
higher the runner speed, the more available space is needed to
take a step. Indeed, the relation between the runners’ speed and
their stride length (LS ) has been reported in refs. 31–33. These
studies show that the stride length increases with speed as shown
in Fig. 7, Inset. The maximum local density ρi at which a pedes-
trian can make a stride LS can be estimated as ρi = 1/(LS We),
with We the effective runner width (SI Appendix, Fig. S1). Then,
using refs. 31–33, we can obtain the minimum space (maximum
density) required by runners to take a step, depending on their
speed (solid lines in Fig. 7). In other words, these curves separate
physically accessible from inaccessible regions in the speed–
density diagram. Interestingly, the theoretical limit obtained is
close to the empirical boundary marking the zone of the diagram
where runners are at a high risk of falling, as shown in Fig. 6.

Encompassing Macroscopic and Microscopic Behavior. After having
identified the different types of individual behaviors leading
to the microscopic speed–density diagram shown in Fig. 5, we
are in a position to explain the origin of the counterintuitive
macroscopic speed–density plots displayed in Fig. 4. To this end,
knowing the type of individual behavior predominating at each
moment becomes crucial. For this reason, in SI Appendix, Fig. S2,
we report the temporal evolution of the number of pedestrians
that belong to the three different types of behavior (normal,
atypical, and extreme) together with the different stages of the
race depicted in Fig. 2. We further filter these signals considering
normal behavior only for pedestrians with v < 1.7 m/s and
v > 1.7 m/s in the other two cases. Clearly, before the approach
of the bulls (stage SB ) pedestrians behave normally (m ∈
[−1, 0]), a pattern that is dramatically altered when the animals
arrive at the field of view. At this moment (stage SC ), the number
of pedestrians behaving normally goes to zero and there is a
peak of people showing atypical and extreme behavior. During
the next 50 s or so (stage SD ), there is a gradual relaxation of
the number of atypical and extreme runners accompanied by
a growth in the number of normal pedestrians. After about 50 s
(stage SE ), the main observed behavior is the normal one, maybe
with a small alteration at ∼100 s, when the second pack of tamed
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Fig. 7. Theoretical limit in the speed–density diagram given by the biome-
chanical data of the stride length of runners required for a given speed (main
text). Reported data correspond to Zrenner et al. (31), Nummela et al. (32),
and Yan and Jin (33).
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Fig. 8. Hypothetical high-speed fundamental diagram. (A) Possible speed–density curves for different desired speeds v0 = v(ρ = 0) (Eq. 2). (B) Proposed
state diagram with, at least, three different regimes.

bell oxen passes through the analyzed region. Note also that, for
the high density and noncompetitive condition of the stage SA

(not shown in the graph as it occurs long before the arrival of the
bulls), all the individual data fall in the region corresponding to
the normal condition where the speed reduces with the density
for ρ > 2 m−2 (SI Appendix, Fig. S2, Inset).

Overall, we observe normal behavior (i.e.,m ∈ [−1, 0]) in most
situations with the exception of the time at which the bulls arrive
and the 40 to 50 s thereafter. At these stages, the runners display
either atypical or extreme behavior, coinciding with the positive
correlation of the average velocity and the macroscopic density
shown in Fig. 4. If we consider the presence of the bulls as a
perturbation similar to the one studied by Nicolas et al. (34), the
runners clearly anticipate it and start running. Moreover, the fact
that the bulls occupy a big fraction of the available area of the
street and the willingness of runners to approach the bulls cause
a sudden increase in the density. In this sense, we can state that
both pedestrian interactions and the special nature of the pertur-
bation triggering their motion determine the observed dynamics.

Discussion
In this work, we have shown that the speed–density relation
in the San Fermín festival does not correspond to any of the
fundamental diagrams reported so far for pedestrians in normal
or competitive conditions. Indeed, the increase of the average
velocity with the systems’ average density is at odds with estab-
lished rules on pedestrian dynamics. Apart from the fact that
the running of the bulls is a time-dependent process, we have
revealed that the key aspect behind this unusual feature is the
variety of ways in which people behave.

Based on the results in the previous sections, we put forward
the following explanation for the observed “bull-run” fundamen-
tal diagram:

• Instead of a single speed–density relation, there exist many
curves that correspond to a broad range of desired speeds.
Indeed, as the desired speed grows the curves become flatter
for a range of small densities (Fig. 5B). This can be explained
if one assumes that runners that are at maximum risk have a
very high desired speed no matter the density.

• The counterintuitive behavior of increasing speed with in-
creasing density would reflect pedestrians changing between
different curves corresponding to different desired speeds. It
shows that an important number of pedestrians wait for the
arrival of the bulls and at that moment they increase their
desired speed, leading to a behavior shown in Fig. 5 C and D.

• For very fast runners, high local densities increase the danger
of falls, a feature that can be rationalized in terms of the stride

length dependence on the speed. Therefore, it is reasonable
to assume that a physical boundary exists for high speeds and
high densities. The red line in Fig. 6 and curves in Fig. 7 give a
qualitative idea of the position of this boundary in the speed–
density diagram.

In Fig. 8A we sketch the different speed–density relations that
have been identified. The curves represent particular cases of
the Kladek–Newell–Weidmann equation (1, 3, 35), an analytical
expression having the flexibility to fit observed speed–density di-
agrams (Materials and Methods). Note that our proposal suggests
that the curves corresponding to the highest desired velocities
drop to a speed equal to zero for high densities, illustrating the
collapse of the system that can be expected when runners try to
run too fast in such crowded conditions. Moreover, the curve
for v0 = 7 m/s represents a part of the boundary between acces-
sible and inaccessible areas in the speed–density diagram. The
lower v0 curves try to reproduce the experimental ones shown in
Fig. 5B. The curve for v0 = 2 m/s represents an enveloping curve
of the data points displayed as a gray cloud in Figs. 5A and 7. Also,
it marks the lower boundary of the accessible–inaccessible limit,
coinciding with the curve of Zrenner et al. (31) in Fig. 7. The limit
v0 = 0 m/s means that if all pedestrians had zero desired speed,
the crowd would not move no matter the density.

Regardless of the particular shape of the curves for the various
desired speeds, the combination of them will lead to a generalized
speed–density space similar to the one sketched in Fig. 8B. There,
different regions can be distinguished: 1) a fleeing region for
low densities in which pedestrians would be able to change their
desired velocity and jump between different curves, 2) an inacces-
sible region for high velocities and densities at which pedestrians
would have a high probability of falling, and 3) a normal region
for pedestrians with low desired speeds where the speed reduces
with increasing density as usually observed in steady-state crowds.
Note that in this region walking pedestrians coexist with those
that want to run but suffer a fall. This degeneration could be
broken if we include the desired speed as a third state variable,
which in the case of a falling pedestrian can be approximated by
the actual speed at which the falling begins.

To test the above explanation of the peculiar speed–density re-
lation observed in Fig. 4, we carried out simulations for states SC

and SD . To this end, we used the contractile particle model (36),
which has been shown to reproduce the experimental speed–
density data for pedestrian systems under normal conditions. Ex-
cept for the constant desired velocities, all the other parameters
of the model are set in the range of those reported in ref. 36.
For a description of this model along with its parameters see
SI Appendix.
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Fig. 9. Simulation results of states SC and SD. (A) Individual speed–density data. (B) Average speed and density in each time frame. The time evolution is
encoded in color.

The main aspect that we introduce in the simulations is the
time-dependent nature of the desired velocities, which depend
on the distance to the bulls. The simulation area has 6 m in
width and 18 m in length (SI Appendix, Fig. S3). Initially, a set of
n0 = 40 waiting agents are distributed uniformly within this area
with desired speed v0 = 0m/s. Three seconds after the simulation
starts, a pack of 10 bulls enters the simulation area at a fixed speed
vb = 6 m/s. Around the bull pack, a new group of n1 = 20 agents
enters the simulation area (this kind of increase in the number
of runners was observed in our data; SI Appendix, Fig. S4 and
Movies S2 [https://osf.io/spgtw/] and S3 [https://osf.io/snhyp/])
and its desired velocities are in the range v0 ∈ (4.8, 6) m/s. Each
of the n0 waiting particles activates (i.e., switch its own v0 to a
positive value) when the first bull particle is at a distance (in
the x direction) of 9 m from its position. At that moment, the
desired speed of the waiting particle changes to a random value
v0 ∈ (4.8, 7.2) m/s. Agents behind the bulls slow down, changing
the desired speed linearly with time until it reaches a walking
value in the range v0 ∈ (0.75, 2.25) m/s at about 40 s since the
simulation started.

The results of the simulations shown in Fig. 9 reproduce the
same kind of dynamics as observed in the real system. Fig. 9A
displays microscopic information of local density and speed. If
we compared this cloud of points with the one in Fig. 7 (or Fig.
5A), we can observe the equivalent vertical development of the
data at low density corresponding to the change of the desired
velocities with time. In Fig. 9B, the time evolution of the mean
speed and density qualitatively matches the results observed in
the San Fermín system displayed in Fig. 4 in which the mean
speed and density increase simultaneously. It should be noted
that the simple model used does not consider falls or avoidance
mechanisms. However, the inaccessible region of the speed–
density diagram is apparent.

In summary, after recording and analyzing a real and em-
blematic pedestrian system in which people display several states
of behavior including high-speed fleeing from a moving threat,
we observed a positive correlation between speed and density
that can be explained in terms of time-dependent desired speed,
which is determined by the bulls’ presence. Furthermore, using
this information we postulate a generalization of the traditional
fundamental diagram of pedestrian dynamics that encompasses
the different behaviors observed.

Materials and Methods
Image Acquisition and Processing. The video camera used was a FLIR DUO
PRO R 640 45◦FOV and it was placed at ∼15 m over the street floor. Visible
and infrared images were taken, but we used only the visible channel that
has a resolution of 3,840 × 2,160 pixels and a frame rate of 30 fps (time in-
terval dt = 1/30 s). Each image was reduced to 960 × 540 pixels and further
cropped to cut off walls and buildings from the image, leaving a final useful

image with bulls and pedestrians of about 960 × 350 pixels. Also, the time
resolution was reduced to dt = 4/30 s = 0.13 s when analyzing the images.

The images were processed semiautomatically. For this, we developed an
ad hoc software that allows the users to label in subsequent frames each
pedestrian head by clicking with the computer mouse on the image and
correcting it if necessary. The software can go forward and backward along
the recording taking one frame out of every four, effectively reducing the
frame rate to dt = 4/30 s. The main source of error in the pedestrian location
is the size of the pedestrians’ heads and their body height. We estimated that
this error was about 0.15 m that is reduced to about 0.12 m with smoothing
(see below). Once the positions of all runners and bulls were obtained, they
were corrected for the lens distortion using the function “undistortPoints”
of the OpenCV library (37). We assumed no tangential distortion on the lens
and determined the quadratic radial distortion coefficient empirically, using
as reference known straight lines in the picture.

Finally, to reduce acquisition fluctuations, the trajectories x′
i (t) and y′

i (t)
are smoothed by interpolating them with a generalized regression neural
network (GRNN) (38) with spread value σ = 1.

It must be noted that because of the zenithal camera position, the
distance to the people, and the resolution used, the actual identity of
each runner is preserved. The “Comité de Ética de la Investigación de la
Universidad de Navarra” (Research Ethics Committee of the University of
Navarra) has assessed this article and has no ethical objections.

Microscopic Velocity and Density Calculation. From the xi(t), yi(t) positions,

the velocities were computed as vxi(t) =
xi(t)−xi(t−0.13 s)

0.13 s and vyi(t) =
yi(t)−yi(t−0.13 s)

0.13 s , and the speed as v(t) =
√

v2
x (t) + v2

y (t).

The local density is calculated by means of the nonparametric k-nearest
neighbors (k-nn) method already considered for similar systems (39, 40). This
method allows computation of the density at any arbitrary point (x, y) in the
space. It relies on measuring the distance to the kth nearest neighbor (dk)
of the point (x, y). In our case, we choose the points in space coinciding with
each runner i; in consequence, the first neighbor of the space point (x, y)
is (xi , yi) being at zero distance. Then, the density is computed as ρi =

k−1
π d2

k
(SI Appendix, Fig. S5). We took k = 5. If the circle of radius dk lies out of the
boundary, a correction is made by subtracting the portion of the circle area
AOUT lying outside the image (SI Appendix, Fig. S5), so the density reads

ρi =
k − 1

π d2
k − AOUT

. [1]

It must be noted that this definition also works when one or more of the
k-nn points correspond to a bull.

We compare this method for calculating local densities with another
one considering the Voronoi area for each particle (41) and, for k = 5, the
differences between the two methods are less than 0.35%.

Kladek–Newell–Weidmann Pedestrian Fundamental Diagram. The curves of
the generalized pedestrian fundamental diagram of Fig. 8 have the func-
tional form of the Kladek–Newell–Weidmann formula, as stated in refs. 1,
3, and 35,

v(ρ) = v0(1 − e
−g( 1

ρ
− 1

ρmax
)
), [2]

where g and ρmax are constants; in particular, ρmax is the density at which
the speed drops to zero. The particular values used for curves in Fig. 8 are
shown in SI Appendix, Table S1.
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SI Appendix. Movies S1–S3 have been deposited in the Open Science Frame-
work (OSF) (Movie S1, https://osf.io/pu35r/; Movie S2, https://osf.io/spgtw/;
and Movie S3, https://osf.io/snhyp/).
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